ADVANCED PLACEMENT COMPUTER SCIENCE
COURSE DESCRIPTION:
This course is designed to be the equivalent to a first semester college computer science course and to prepare the student for the AP examination. The student will learn about object-oriented program design. The course will focus on being able to write programs in Java.

COURSE OBJECTIVES:

1. Grow in their faith in Jesus Christ

2. Be prepared to do well on the AP Computer Science exam

3. Be prepared to do well in a second level college programming course

4. Learn good programming practices

5. Break a task into ordered steps

6. Plan and implement a program

7. Debug a program

8. Understand decision making and loops in programming

9. Understand using tables in programming

10. Understand object-oriented programming and connected concepts

INTEGRATING THE FAITH:

The class focuses on writing programs, and there are few days of lecture in the entire course. Therefore, most integrating of the faith takes place in one-on-one situations and is more likely to be connected to student attitude, work habits, responsibility, or emotional states. When a student does wrong, I make a point to express both my forgiveness and God’s, and while I have to monitor patterns of behavior, I try not to hold past misdeeds against a student. When I do address the whole class on matters of faith, it is most likely to be related to current events in the world or the school than to a math problem, and so it will vary quite a bit from year to year.
COURSE OUTLINE:
1. Computer Systems

1.1. Introduction

1.2. Hardware components

1.3. Networks

1.4. Programming

1.4.1. Problem solving

1.4.2. Java

1.4.3. Comments

1.4.4. Identifiers and reserved words

1.4.5. White space

1.4.6. Assign projects

1.4.6.1. Project 1.1:Compile a simple println program

1.4.6.2. Project 1.2:Intoduce errors into 1.1 and examine the results

1.4.6.3. Project 1.3:Compile a program with multiple printlns

1.4.6.4. Project 1.5:Print a diamond with asterisks

1.5. Programming Languages

1.5.1. Language levels

1.5.2. Compilers and interpreters

1.5.3. Syntax and semantics

1.5.4. Errors

1.6. Computer use today

1.6.1. Legality of copying software, etc.

1.6.2. Privacy

1.6.3. How the computer impacts out lives

2. Objects and primitive data

2.1. Using objects

2.1.1. Print and println methods

2.1.2. abstraction

2.2. String literals

2.2.1. Concatenation

2.2.2. Escape sequences

2.3. Variables and assignment

2.3.1. The assignment statement

2.3.2. Constants

2.4. Primitive data types

2.4.1. Integers and floating points

2.4.2. Booleans

2.4.3. Characters

2.5. Arithmetic expressions

2.5.1. Operator precedence

2.5.2. Data conversion, casting

2.5.3. Assign projects

2.5.3.1. Project 2.1:Print using escape sequences

2.5.3.2. Project 2.2:Read three numbers and average them

2.5.3.3. Project 2.5:Convert miles to kilometers

2.5.3.4. Project 2.6:Read hours/minutes/seconds and convert to seconds

2.6. Enumerated types

2.7. Creating objects

2.7.1. The string class

2.7.2. Wrapper classes

2.7.3. Autoboxing

2.8. Class libraries and packages

2.8.1. The import declaration

2.8.2. The Random class

2.8.3. The Math class

2.9. Interactive programs

2.9.1. The Scanner class

2.10. Formatting output

2.10.1. The NumberFormat class

2.10.2. The DecimalFormat class

2.10.3. Assign projects

2.10.3.1. Project 2.9: Read radius of sphere and print volume and surface area

2.10.3.2. Project 2.10: Calculate area of triangle using Heron’s formula

2.10.3.3. Project 2.11: Compute miles per gallon of gas for a trip based on gallons and odometer readings

2.10.3.4. Project 2.13: Create and print random phone numbers based on specific criteria

3. Program statements

3.1. Control flow

3.2. The if statement

3.2.1. Equality and relational operators

3.2.2. If-else

3.2.3. Blocks of code

3.2.4. Nested ifs

3.2.5. Assign project 3.2: Determine if a given year is a leap year

3.3. Boolean expressions revisited

3.3.1. Logical operators

3.3.2. Comparing characters and strings

3.3.3. Comparing floating point values

3.4. More operators

3.4.1. Increment

3.4.2. Assignment

3.5. The while statement

3.5.1. Infinite loops

3.5.2. Nested loops

3.6. Iterators

3.7. The for statement

3.8. Program development revisited

3.8.1. Assign projects

3.8.1.1. Project 3.9 Print “One Hundred Bottles” song using loops

3.8.1.2. Project 3.10 Hi-Lo guessing game

3.8.1.3. Project 3.14 Rock-paper-scissors vs. the computer

4. Writing classes

4.1. Anatomy of a class

4.1.1. Instance data

4.1.2. Encapsulation and visibility modifiers

4.2. Anatomy of a method

4.2.1. Return statement

4.2.2. Parameters

4.2.3. Preconditions and Postconditions

4.2.4. Constructors

4.2.5. Local data

4.2.6. Accessors and mutators

4.2.7. Assign projects

4.2.7.1. Project 4.1 Alter the Account class given in the book to allow funds to be moved from one account to another

4.2.7.2. Project 4.3 Rolls a die, user is able to choose number of sides. Use the die class previously created in the program

4.2.7.3. Project 4.6 Design a class called Card to represents a standard playing card. Create a program that deals 20 cards at random

4.3. Method overloading

4.3.1. Assign project 4.8 Change the student class so that each student object contains three test scores. Provide constructors. Provide a method called setTestScore, getTestScore, and average. Modify the toString method.

4.4. Method decomposition

4.4.1. Assign project 4.4 Create a class called PairOfDice out of two Die objects. Create a driver class that counts how many times two sixes are rolled out of 1000 rolls.

4.5. Object relationships

4.5.1. Assign projects

4.5.1.1. Project 4.5 Use PairOfDice to play a game called Pig

4.5.1.2. Project 4.7 Create a program that can add, subtract, multiply, or divide two fractions using the Rational class.

5. Enhancing classes

5.1. References revisited

5.1.1. Null

5.1.2. This

5.1.3. Aliases

5.1.4. Objects as parameters

5.2. The static modifier

5.2.1. Static variables

5.2.2. Static methods

5.3. Exceptions

5.3.1. Assign project 5.1 Change the PigLatinTranslator class so that its translate method is static.

5.4. Interfaces

5.5. Identifying classes and objects

5.5.1. Assign projects

5.5.1.1. Project 5.3 Design an interface called Priority that has two methods: setPriority and getPriority. Design a class called Task that implements Priority.

5.5.1.2. Project 5.4 Change the Task class so that it also implements the Complexity interface.

5.5.1.3. Project 5.5 Change Task so that it also implements the Comparable interface. Create a driver that shows these features of Task.

5.5.1.4. Project 5.6 Design a interface called Lockable. A Lockable object can have its methods locked and requires a key to unlock.

5.5.1.5. Project 5.7 Redesign the Account class so that it is Lockable

6. Arrays

6.1. Arrays

6.1.1. Indexing

6.1.2. Declaring and using arrays

6.1.3. Arrays as parameters

6.1.4. Assign projects

6.1.4.1. Project 6.1 Design an application that reads a number of integers from 0 to 50 and counts how many times each is entered.

6.1.4.2. Project 6.2 Change the program to use integers from –25 to 25

6.2. Searching

6.2.1. Linear(sequential) search

6.2.2. Binary search

6.2.3. Under what conditions is each type of search preferable

6.3. Sorting

6.3.1. Selection sort

6.3.2. Insertion sort

6.3.3. Other types of sorts and determining which type of sort is preferable

6.3.4. Assign projects

6.3.4.1. Project 6.3 Rewrite the Sorts class to sort in descending order

6.3.4.2. Project 6.4 Read a set a values in the range of 1 to 100 and print a chart showing how often the values appear.

6.4. Arrays of Objects

6.4.1. Arrays of strings

6.4.2. Arrays of other objects

6.4.3. Filling arrays of objects

6.4.4. Sorting arrays of objects

6.4.5. Assign projects

6.4.5.1. Project 6.6 Design a program that manages several account objects

6.4.5.2. Project 6.8 Create a DeckOfCards class that stores 52 Card objects

6.4.5.3. Project 6.9 Create a Quiz class made up of Question objects

6.4.5.4. Project 6.10 Modify Quiz to order questions by difficulty

6.5. Two-dimensional arrays

6.6. The ArrayList class

6.6.1. ArrayList vs. array: which should you use

6.6.2. Assign projects

6.6.2.1. Project 6.11 Change the Tunes program so it keeps the CDs sorted by title

6.6.2.2. Project 6.12 Change the Sorts class to include an overloaded version of the SelectionSort method that performs a general object sort.

7. Inheritance

7.1. Gridworld case study part 1

7.2. Creating subclasses

7.2.1. Derived classes

7.2.2. The super reference

7.3. Overriding methods

7.4. Gridworld case study part 2

7.5. Class hierarchies

7.5.1. The object class

7.5.2. Abstract classes

7.6. Indirect use of class members

7.6.1. Assign projects

7.6.1.1. Project 7.1 Derive MonetaryCoin from the Coin class so that in includes a value

7.6.1.2. Project 7.2 Design and implement a set of classes that define the employees of a hospital: doctor, nurse, administrator, surgeon, receptionist, janitor, etc. Include methods according to services provided.

7.7. Gridworld case study part 3

7.8. Designing for inheritance

7.9. Polymorphism

7.9.1. Assign project 7.4 Design a set of classes that represent specific sports. Move common attributes to the higher-level classes.

7.10. Interfaces

7.11. Designing for polymorphism

7.12. Gridworld case study part 4

8. Recursion

8.1. Recursive thinking

8.2. Recursive programming

8.2.1. Recursion vs. iteration—determining which is the most appropriate

8.2.2. Direct vs. indirect recursion

8.3. Using recursion

8.4. Recursion in sorting

8.4.1. Merge sort

8.4.2. Assign project 8.9 Design a recursive program to print the Nth line of Pascal’s Triangle.

EVALUATION:

Tests are 40% of the grade. Test corrections are 10%. Participation is 10%. Programs are 40%. Participation is based on homework, class behavior and effort, participation in class activities, and can be above 100% or below 0%. All incorrect problems on a test must be reworked as a separate assignment. Students will be able to continue reworking problems until the next test. Completed test corrections count 100% and uncompleted count 0%. In class, students are expected to take an active role in all discussions, problems worked together on the board, and small group assignments.

All students who take this course are expected to take the AP Computer Science A exam at the end of the year. The course is designed to cover all topics on the AP Computer Science A Course Description. The AP exam is made up of two parts. There is a multiple choice with 40 questions and a free response with 4 questions

